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Abstract. The lowest (s, S) and (p, P) exciton states of a GaAs quantum dot with an isotropic
parabolic potential are calculated. Hole states are calculated from the Luttinger–Kohn scheme in
the spherical approximation, thus taking light-hole and heavy-hole mixing into account. Exciton
states are obtained from an expansion of the wavefunction in a basis formed by products of
electron and hole states, and the size dependence of the exciton levels is investigated. By
comparison to a one-band model it is found that the effect of valence band mixing is very
important and that the one-band model overestimates the exciton energy by more than 20% in
the case of strong confinement.

1. Introduction

The progress in nanoscale lithography and microcrystallite doping of glasses now makes
it possible to study the dynamics of confined carriers in zero-dimensional systems.
Optical spectroscopic measurements have proven very successful in investigations of the
effects of size quantization on electron and hole states in these systems. Far-infrared
transmission spectroscopy on quantum dot (QD) samples of GaAs, InSb and related
structures (see, e.g., [1–3]) have clearly demonstrated size quantization in intersubband
transitions. These studies, as well as theoretical ones [4], indicate that the in-plane
confinement is approximately parabolic (harmonic). The properties of interband transitions
have mainly been investigated for the cases of CdS and CdSe microcrystallites embedded
in a dielectric [5–9]. Due to the sharp boundary between materials these systems are
well described by a spherical square-well potential [6, 9]. A few reports have published
luminescence spectra for interband transitions in QDs of GaAs and related compounds.
The earliest of these [10, 11] were hampered by large inhomogeneous broadening due to
the size distribution of the nanostructures, and even though size quantization was clearly
demonstrated details of the level structure could not be obtained. Recently, however,
Brunner et al [12] have published data from interband photoluminescence experiments
performed on single GaAs/AlGaAs QDs prepared by thermal interdiffusion. These results
show well-resolved exciton peaks in the luminescence spectra and the size dependence of
the exciton levels are extracted. Again, it is found that the confinement is approximately
parabolic.

A number of theoretical investigations of exciton levels in GaAs QDs have been
published. The importance of the Coulomb attraction has been demonstrated [13, 14].
These studies, however, used a simple one-band model for the valence band. The effects
of valence band mixing in GaAs QDs have been studied in [15] and [16]. Here, square-
well potentials (spherical and box-type) are assumed and the conclusion is that valence
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band mixing is very important for both geometries. The effects of valence band mixing
in more realistic potentials, however, have not been studied. In the case of QDs prepared
by thermal interdiffusion starting from a narrow quantum well, the potential is presumably
well described by a hard-wall potential in the direction perpendicular to the quantum well
and a soft confinement potential in the plane. Unfortunately, even for cylindrical geometry
a full valence-band-mixing calculation is very complicated. Hence, in the present work we
will take a spherical parabolic potential to represent the confinement. This type of potential
is assumed to be adequate in the case of interdiffusion starting from a quantum well of
width comparable to the range of the interdiffusion profile, i.e. much larger then the 30Å
width of the sample used by Brunneret al. In addition, restricting ourselves to such wide
potentials ensures the applicability of the effective-mass approximation (EMA) since the
EMA is only valid for potentials with a large extent compared to the lattice constant. In the
case of a GaAs microcrystallite in vacuum, Ramaniah and Nair [17] showed that the EMA
is quite inadequate in the size range of 8–28Å radius considered by them. In the present
model the confinement is produced by the interdiffusion profile, i.e. a smoothly varying Al
concentration in an infinite medium. Hence, the restriction on the EMA may be somewhat
relaxed but obviously the EMA cannot be used uncritically. Also, as demonstrated in [9], the
assumption of a slowly varying envelope potential superimposed on the lattice potential is
inadequate for the smallest QDs. Hence, even though the present theory will be formulated
with the particle diameter (d) as a variable parameter, the region whered < effective Bohr
radius is actually outside the presumed limits of validity.

In the case of spherical symmetry the Luttinger–Kohn [18] Hamiltonian may be
simplified dramatically [19, 20]. Baldereschi and Lipari [20] showed that on retaining
only the spherically symmetric part of the Hamiltonian, the hole state Schrödinger equation
reduces to two coupled radial equations. Thus, this scheme is easily handled by numerical
methods. In this paper we adopt the spherical approximation for the calculation of hole
states, and electron states are calculated from a simple single-band model. Using the joint
basis of electron and hole states, exciton states are found by introducing the Coulomb
coupling between electrons and holes. Numerical results for GaAs are presented and the
full valence-band-mixing calculation is compared to the one-band model used by Que [14].
The two results for the exciton ground-state energy are shown to differ significantly in the
cases of intermediate and strong confinement.

2. Electron and hole states

Our model assumes a slowly varying Al fraction in the otherwise homogeneous GaAlAs
medium to be responsible for the QD potential. Hence, complications arising from
boundaries between media with different dielectric constants can be neglected, and we will
take a purely parabolic potential to represent the confinement. A natural complication arises
from the fact that the parabolic potentialV (r) = 1

2mω2
0r

2 has an explicit dependence on
the effective mass in question. Hence, electrons in different valence bands will experience
different confinement potentials. In addition, the confinement introduces mixing between
the valence bands, so mixed states rather than decoupled light- and heavy-hole states are
observed. This leads to some arbitrariness in the choice of mass for the potential. This
difficulty could be removed via introduction of different parabola frequencies for electrons
and holes (say,ω0 and �0) and use of these as independent fitting parameters. Here,
however, we will follow the lines of Que [14] and use the same parabola frequency for both
holes and electrons. Also, it is assumed that the lowest size-quantized levels are adequately
described using the light-hole mass in the potential. Consequently, the potentials felt by
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electrons and holes are taken to be spherically symmetric and given byVe(r) = 1
2meω

2
0r

2

and Vh(r) = 1
2mlhω

2
0r

2, respectively, whereme and mlh are the effective electron and
light-hole masses andω0 is the common parabola frequency. The assumption of identical
parabola frequencies implies that for materials withmlh ≈ me, such as GaAs, the range of
electron and hole potentials will be approximately equal. Hence, a large overlap between
electron and hole wavefunctions is expected and Coulomb coupling will be strong. If,
on the other hand, widely different parabola frequencies were used, the coupling would
be reduced which in turn would lead to reduced binding energies and oscillator strengths.
Using identical parabola frequencies but widely different masses would lead to a similar
result.

All states are (sums of) products of a Bloch part and an envelope part. Throughout
we take r to mean the position vector in envelope space, and so〈r|ψ〉 denotes the
projection of |ψ〉 onto envelope space. The envelope wavefunctions of electron states
areϕn,l,m(r) = Ylm(θ, ϕ)Rn,l(r), with Rn,l(r) satisfying the radial equation[

− h̄2

2me

1

r

d2

dr2
r + 1

2
meω

2
0r

2 + l(l + 1)h̄

2mer2

]
Rn,l(r) = En,lRn,l(r). (1)

We will restrict this treatment to the lowest s- and p-type states and for notational
simplicity we relabel the s- and p-type radial functions according toRn,0(r) ≡ ln(r) and
Rn,1(r) ≡ kn(r). The normalized radial part of the wavefunctions is given by

ln(r) = β3/2

(
2n!

0(n + 3/2)

)1/2

L1/2
n (β2r2)e−(1/2)β2r2

(2)

and

kn(r) = β3/2

(
2n!

0(n + 5/2)

)1/2

βrL3/2
n (β2r2)e−(1/2)β2r2

= 1

βr

{
(n + 3/2)1/2ln(r) − (n + 1)1/2ln+1(r)

}
(3)

whereβ = (meω0/h̄)1/2, and the corresponding energy eigenvalues areEn,0 = ( 3
2 + 2n)h̄ω0

and En,1 = ( 5
2 + 2n)h̄ω0, respectively. The hole states are labelled by the total angular

momentumF , the principle quantum numberN and the envelope angular momenta. In fact,
each state contains two terms with envelope angular momentumL andL + 2, respectively,
and so mixing between these different angular momenta is observed [9, 15]. The lowest
states are the S-like(L = 0) and P-like(L = 1) states withF = 3/2. These states are
labelled

∣∣NSFz

〉
and

∣∣NPFz

〉
and can be expressed as [15, 20]〈

r|NSFz

〉 = fNS(r) |0, 3/2, 3/2, Fz〉 + gNS(r) |2, 3/2, 3/2, Fz〉 (4)

and 〈
r|NPFz

〉 = fNP(r) |1, 3/2, 3/2, Fz〉 + gNP(r) |3, 3/2, 3/2, Fz〉 . (5)

Here the angular dependence is incorporated via the|L, J, F, Fz〉 states, whereJ is the Bloch
function angular momentum andFz is the component ofF in thez-direction. In the general
Luttinger–Kohn scheme the valence band is described by three effective-mass parameters
γ1, γ2 andγ3, but in the spherical approximation the isotropy assumptionγ2 = γ3 is used.
These parameters enter via the effective hole massmh = m0/γ1, and the spin–orbit coupling
µ = 2γ2/γ1. In fact, the assumptionγ2 = γ3 is only strictly needed for the spherically
non-invariant part of the Luttinger–Kohn Hamiltonian. Retainingγ2 6= γ3 in the spherically
invariant part (axial approximation) simply implies using [20]µ = (6γ3 + 4γ2)/5γ1 as
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the strength of the spin–orbit coupling. Hence, the difference between the two degrees of
approximation only lies in the choice ofµ to be used in numerical calculations. In terms
of the spin–orbit coupling the light-hole mass is given bymlh = mh/(1 + µ). When using
simplified length and energy units taken asβ−1 and 1

2h̄ω0, respectively, the radial functions
are solutions to the following set of coupled differential equations [15, 20]:

− 1

γ

[
d2

dr2
+ 2

r

d

dr

]
+ γ

1 + µ
r2 − ENS

µ

γ

[
d2

dr2
+ 5

r

d

dr
+ 3

r2

]
µ

γ

[
d2

dr2
− 1

r

d

dr

]
− 1

γ

[
d2

dr2
+ 2

r

d

dr
− 6

r2

]
+ γ

1 + µ
r2 − ENS


×

[
fNS(r)

gNS(r)

]
= 0 (6)

and
−

(
1

γ
− 4µ

5γ

) [
d2

dr2
+ 2

r

d

dr
− 2

r2

]
+ X

3µ

5γ

[
d2

dr2
+ 7

r

d

dr
+ 8

r2

]
3µ

5γ

[
d2

dr2
− 3

r

d

dr
+ 3

r2

]
−

(
1

γ
+ 4µ

5γ

) [
d2

dr2
+ 2

r

d

dr
− 12

r2

]
+ X


×

[
fNP(r)

gNP(r)

]
= 0 (7)

where

X = γ

1 + µ
r2 − ENP

whereγ = mh/me. The additional factor 1/(1 + µ) in the parabolic terms corresponds
to the use of the light-hole mass for the confinement potential, as argued above. The size
dependence of the energy eigenvaluesENS and ENP is hidden in the choice of energy
units as is seen from the relation12h̄ω0 = h̄2β2/2me, i.e. the energy eigenvalues scale as
(length scale)−2. It may be noted that without the presence of the confinement, the solutions
to the equations above are given in terms of spherical Bessel functions with eigenvalues
proportional to 1+ µ and 1− µ corresponding to decoupled light- and heavy-hole states,
respectively. The radial functions of the

∣∣NSFz

〉
and

∣∣NPFz

〉
states are obtained from an

expansion in a finite basis. For later convenience, the orthonormal bases{li(r)} and{ki(r)}
are chosen. Hence, solving equations (6) and (7) reduces to calculating the coefficients
{ai, bi, ci, di} given by

fNS(r) =
∑

i

ai li(r) and gNS(r) =
∑

i

bi li(r) (8)

and

fNP(r) =
∑

i

ciki(r) and gNP(r) =
∑

i

diki(r) (9)

subject to the normalization conditions∑
i

(a2
i + b2

i ) = 1 and
∑

i

(c2
i + d2

i ) = 1.

The expressions (8) and (9) are inserted into the coupled differential equations, each of
which are then transformed into a single matrix equation from which the eigenvalues and
eigenvectors are obtained numerically.
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3. Exciton states

We now introduce the Coulomb coupling between electrons and holes. The Coulomb
interaction conserves the total angular momentum but not that of the individual particles.
Consequently, this leads to coupling between sS and pP electron–hole pairs. Since the total
angular momentum is a good quantum number, the exciton wavefunction is conveniently
expanded in a basis consisting of eigenstates of the total angular momentum. In optical
spectroscopy, spin-conserving transitions are dominating and so the exciton state should
have vanishing total spin. Hence, we will restrict this treatment to exciton states with a
total angular momentumF characterized byF = 1 andFz = 0. We takeN = 0, 1, . . . to
label the exciton level, and the exciton states|8N 〉 are expanded as follows:

|8N 〉 =
∑
n,N

CnN |nsNS〉 +
∑
n,N

DnN |npNP〉 . (10)

If we denote the electron Bloch wavefunction by|Sσ 〉, σ ∈ {−1/2, 1/2} = {↓, ↑}, the basis
states are given by

|nsNS〉 =
∑
Fz,σ

∣∣ϕn,0,0
〉 |Sσ 〉 ∣∣NSFz

〉
(1/2 σ 3/2 Fz|1 0)

= 1√
2

∣∣ϕn,0,0
〉 {|S↑〉 ∣∣NS−1/2

〉 − |S↓〉 ∣∣NS1/2
〉}

(11)

and

|npNP〉 =
∑

Fz,σ,m

∣∣ϕn,1,m

〉|Sσ 〉 ∣∣NPFz

〉
(1 m 1/2 σ |3/2 −Fz)(3/2 σ + m 3/2 Fz|1 0)

= 1√
60

{
3
√

3
∣∣ϕn,1,−1

〉 ∣∣NP3/2
〉 − √

2
∣∣ϕn,1,0

〉 ∣∣NP1/2
〉 − ∣∣ϕn,1,1

〉 ∣∣NP−1/2
〉} |S↓〉

+ 1√
60

{
3
√

3
∣∣ϕn,1,1

〉 ∣∣NP−3/2
〉

−
√

2
∣∣ϕn,1,0

〉 ∣∣NP−1/2
〉 − ∣∣ϕn,1,−1

〉 ∣∣NP1/2
〉} |S↑〉 (12)

where (j1 m1 j2 m2|j m) is the Clebsch–Gordan coefficient for addition of angular
momenta. Provided that we use energy units of1

2h̄ω0, the exciton problem reduces to
calculating eigenvalues and eigenvectors of the Hamiltonian matrix with elements

HnN,mM = (En + EN)δnmδNM − λRnN,mM (13)

where λ = 2/(a∗
0β) is the ratio between the QD diameterd ≈ 2/β and the effective

electron Bohr radiusa∗
0 = 4πεε0h̄

2/(e2me), ε being the static dielectric constant of GaAs.
In addition, theRnN,mM -matrix contains the Coulomb matrix elements. This matrix is
conveniently written in terms of four submatrices corresponding to whether the electron–
hole pairs are of s or p type, i.e.

RnN,mM =
(

Rss
nN,mM R

sp
nN,mM

R
ps
nN,mM R

pp
nN,mM

)
(14)

where, for instance,

Rss
nN,mM = 〈nsNS| 1

βreh

|msMS〉 . (15)
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The matrix elements are calculated using the central result [21]

1

|x − y | = 4π

∞∑
k=0

k∑
m=−k

1

2k + 1

[min(x, y)]k

[max(x, y)]k+1
Y ∗

km(�x)Ykm(�y) (16)

where �x is the solid angle ofx etc. Using some results from the theory of angular
momentum [21], the matrix elementsRnN,mM can be expressed by the rather simple
expressions

Rss
nN,mM =

∑
i,j

(aiaj + bibj )

∫ ∞

0
S0

nm(x)li(x)lj (x)x2 dx (17)

R
sp
nN,mM =

∑
i,j

{
2

9
aicj + 8

45
bicj − 8

105
bidj

} ∫ ∞

0
S1

nm(x)li(x)kj (x)x2 dx (18)

R
ps
nN,mM =

∑
i,j

{
2

9
aj ci + 8

45
bj ci − 8

105
bjdi

} ∫ ∞

0
S1

mn(x)ki(x)lj (x)x2 dx (19)

and

R
pp
nN,mM =

∑
i,j

(cicj + didj )

∫ ∞

0
S2

nm(x)ki(x)kj (x)x2 dx (20)

where{ai, bi, ci, di} and{aj , bj , cj , dj } should be taken as the coefficients corresponding to
|nN〉 and |mM〉, respectively. In the expression forR

pp
nN,mM a small correction stemming

from thek = 2 term in equation (16) has been neglected. In order to provide expressions
for the S-functions we introduce the notation

S[α, β, γ, δ; x] =
n∑

a=0

m∑
b=0

(−1)a+b[n!m!0(n + α)0(m + β)]1/2

(n − a)!(m − b)!0(a + α)0(b + β)a!b!

×
{

0(a + b + β) − 0(a + b + β, x2)

x1+δ
+ xδ0(a + b + γ, x2)

}
(21)

where0(k, z) is the incomplete Gamma function. Thus,

S0
nm(x) =

∫ ∞

0
ln(y)lm(y)

y2

max(x, y)
dy = S[3/2, 3/2, 1, 0; x] (22)

S1
nm(x) =

∫ ∞

0
ln(y)km(y)

y2min(x, y)

[max(x, y)]2
dy = S[3/2, 5/2, 1, 1; x] (23)

and

S2
nm(x) =

∫ ∞

0
kn(y)km(y)

y2

max(x, y)
dy = S[5/2, 5/2, 2, 0; x]. (24)

The above expressions can for each{n, m} be reduced to a combination of the functions
8(x)/x, 8(x)/x2 and xke−x2

. Hence, in the calculation ofRnN,mM only three types of
integral appear. These integrals are discussed in the appendix.

4. Numerical results

The computational scheme presented in the previous section is easily implemented on a
computer provided that the basis set is limited to a reasonable number of states. Here
we will use a 51-member basis in the calculation of hole states. Since the strength of
electron and hole potentials is quite similar in the case of GaAs, hole states are easily
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Figure 1. The four lowest SF=3/2 (solid lines) and PF=3/2 (dashed lines) hole state eigenvalues
as a function ofµ, the spin–orbit coupling. The results are obtained from a numerical solution
of the coupled equations in the spherical two-band model.

constructed from a basis of electron states and convergence is fast. From usual GaAs
material parameters, i.e.me = 0.068m0 and [15] γ1 = 6.8, we find γ = 2.16. Using
these values the hole state energy eigenvalues are calculated as a function of the spin–orbit
coupling µ as shown in figure 1. In the case of vanishing mixing, the decoupled light-
and heavy-hole eigenvalues would scale as 1+ µ and 1− µ, respectively. From the actual
calculation it is seen that the dependence is approximately linear in the region of small
coupling, i.e. of the formE(µ) = E(0)(1 + αµ). The slope (α), however, is somewhere
between−1 and+1 (approximately−0.5 for the lowest state) and for large coupling the
relation is no longer linear. The appropriate value ofµ for GaAs is [15]µ ≈ 0.7 and around
this value the deviation from the simple decoupled behaviour is pronounced. In addition,
the energy levels are no longer equidistant. Forµ = 0.7 the seven lowest eigenvalues for
the S states are 1.83, 3.17, 4.72, 6.32, 8.05, 9.69 and 11.4, all in units of1

2h̄ω0. For the P
states the corresponding values are 2.23, 3.87, 5.52, 7.18, 8.81, 10.5 and 12.2.

Once the hole states are obtained the exciton problem can be addressed. The evaluation
of theRnN,mM -matrix is somewhat time-consuming but this need only be done once due to
the simple dependence on QD size of theHnN,mM -matrix in equation (13). We take the 10
lowest electron states and 14 lowest hole states into account, soHnN,mN is of dimension
70 × 70. Using this matrix the size dependence of the energy eigenvalues is obtained
numerically. In the limitd → 0 (λ → 0) the Coulomb coupling is excluded by the
infinitely large confinement energy. Hence, the exciton wavefunction is simply the product
of a single electron state and a single hole state, i.e. only a single term in equation (10). The
exciton states are conveniently labelled by this term and so the ground state is denoted as
(0s, 0S), etc. The four lowest energy eigenvalues are displayed in figure 2. Here the total
exciton energy is calculated and the exciton binding energy can be obtained by subtracting
the value atd = 0. The energy unit12h̄ω0 can be converted into physical units using
1
2h̄ω0 = (4/λ2)R∗, whereR∗ is the effective electron RydbergR∗ ≈ 4.8 meV. In figure 3
the energy eigenvalues are shown using physical units. The effect of size quantization is
seen to be very important when the QD size is comparable to the effective Bohr radius.
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Figure 2. The four lowest exciton levels versusd, the quantum dot diameter. The energy is
given in the size-dependent units1

2h̄ω0.

Figure 3. The same as figure 2 except that physical units of energy are used.

In order to illustrate the effect of valence band mixing on the exciton states we compare
our results to those found in the model of Que [14]. In this model hole and electron states
are described by single bands and, by separating centre-of-mass and relative motion, it is
found that the exciton problem is reduced to solving the following equation:[

−1

r

d2

dr2
r + r2 − κ

r
− (E − 3)

]
φ(r) = 0. (25)

Hereφ(r) is the relative-motion part of the exciton ground-state wavefunction,r being the
relative distancer = |re − rh|. In addition, E is the total energy in units of12h̄ω0 and
(mrω0/h̄)1/2 ≡ 1, mr being the reduced massm−1

r = m−1
e + (1 + µ)m−1

h . The parameterκ
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is related to the quantityλ used in the present work viaκ = (mr/me)
1/2λ ≈ 0.75λ. Instead

of solving the radial equation numerically, we use the variationalansatzφ(r) = Ae−r2/2−αr ,
where A is a normalization constant andα is a variational parameter determined by
minimizing the energy. It is readily found that

E = 6 − α2 − 2α
ρ3(α)

ρ2(α)
+ (2α − κ)

ρ1(α)

ρ2(α)
(26)

where

ρn(α) =
∫ ∞

0
e−r2−2αrrn dr. (27)

The expression for the energy is easily minimized on a computer. Obviously, the variational
energy is exact in the limitsκ → 0 andκ → ∞. In order to check theansatzfor intermediate
κ-values we apply the variational treatment to the spherical Zeeman problem [22]. This case
is exactly identical to equation (25) provided thatκ = 2 andr2 is replaced by 2r2. The exact
ground-state energy quoted in [22] isE = 3.593 77. Using theansatzφ(r) = Ae−r2/

√
2−αr

yields the resultE = 3.599 97. Hence, in this case the error is seen to be less than 1%.
This demonstrates the validity of the variational approach used in the present work.

Figure 4. A comparison of the exciton ground-state energy as obtained from the full two-band
model and the one-band model. The two-band result is obtained from a finite-basis expansion
and the one-band result is calculated from a variational treatment.

The one-band ground-state energy obtained from the variational treatment can be
compared to the two-band calculation including valence band mixing. The two results
are shown together in figure 4. The different calculations are seen to converge in the limit
of vanishing confinement, as expected. For strong and intermediate confinement, however,
the difference is pronounced. Apparently, the one-band model in general overestimates the
exciton energy. Ford = a∗

0 and d = 2a∗
0 the difference between the energy eigenvalues

obtained in the two models is 5.0R∗ and 1.3R∗, respectively, and in general ford 6 2a∗
0

the ratio between the difference and the average energy exceeds 20%, demonstrating the
significance of valence band mixing for strong confinement. It should be remembered,
however, that since the present work relies on the effective-mass approximation, the results
cannot be expected to hold in the case of extremely small QDs, i.e. ford < a∗

0.
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5. Summary

In summary, we have demonstrated the importance of valence band mixing in spherical
harmonic GaAs quantum dots. Starting from the spherical model of Baldereschi and
Lipari [20] we have calculated hole state wavefunctions and energy eigenvalues. Using
the joint basis of electron and hole states, the lowest (s, S) and (p, P) exciton levels are
computed. The size dependence shows a very large enhancement of the exciton energy in the
strong-confinement limit. In order to quantify the effect of valence band mixing due to the
confinement, we compare our results with the one-band model of Que [14]. It is shown that
the one-band model in general overestimates the exciton energy. The difference between
the energy eigenvalues (normalized to the average value) found in the two approaches is
large in both the strong- and intermediate-confinement regions, reaching more than 20% for
the ground state in the strong-confinement limit.

Appendix. Integrals

In this appendix, explicit expressions for the integrals involved in the calculation of the
RnN,mM -matrix are presented. When the last equality of equation (3) is used it is seen that
all integrals can be reduced to combinations of the expressions

Uk
ij =

∫ ∞

0
li(x)lj (x)8(x)x2k−1 dx k = 0, 1 (A1)

and

V k
ij =

∫ ∞

0
li(x)lj (x)e−x2

x2k+2 dx k = −1, 0, 1, . . . , 8. (A2)

The computations are simplified through the recursive relations

U0
ij =

(
16j2 − 8j + 1

2j (2j + 1)

)1/2

U0
i,j−1 −

(
2

j (2j + 1)

)1/2

U1
i,j−1 −

(
(2j − 1)(j − 1)

j (2j + 1)

)1/2

U0
i,j−2

(A3)

and

V k
ij =

(
16j2 − 8j + 1

2j (2j + 1)

)1/2

V k
i,j−1 −

(
2

j (2j + 1)

)1/2

V k+1
i,j−1 −

(
(2j − 1)(j − 1)

j (2j + 1)

)1/2

V k
i,j−2.

(A4)

By expanding the Laguerre polynomials it is readily found that

U1
ij =

i∑
a=0

j∑
b=0

(−1)a+b[i!j !0(i + 3/2)0(j + 3/2)]1/2

(i − a)!(j − b)!0(a + 3/2)0(b + 3/2)a!b!

× 2√
π

0(a + b + 3/2)2F1

[
1

2
, a + b + 3

2
; 3

2
, −1

]
(A5)

where2F1 is the hypergeometric function. If we introduce the notation

f k
ij = (−1)i+j0(i + j − k + 3/2)0(i − j + k + 1/2)0(j − i + k + 1/2)

π 2i+j−k+3/2[i!j !0(i + 3/2)0(j + 3/2)]1/2
(A6)
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the integralV 8
ij can be expressed as

V 8
ij = 1

216

[
f 8

ij + 240f 7
ij + 21 840f 6

ij + 960 960f 5
ij + 216 216 00f 4

ij

+ 242 161 920f 3
ij + 1210 809 600f 2

ij + 2075 673 600f 1
ij + 518 918 400f 0

ij

]
.

(A7)

In addition to these expressions we need the results

U0
i0 =

(
(2i + 1)!

π 22i−3

)1/2 i∑
a=0

(−1)a

(i − a)!a!(a + 1/2)
2F1

[
1

2
, 1 − a; 3

2
,

1

2

]
(A8)

and

V k
i0 = 0(k + 3/2)0(i + 3/2)

π [(2i + 1)! 22k−1]1/2 2F1

[
−i, −k; 3

2
, −1

]
. (A9)
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